Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Understanding High-Dimensional Spaces

Über Understanding High-Dimensional Spaces

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect.  There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions.  The book will be of value to practitioners, graduate students and researchers.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783642333972
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 120
  • Veröffentlicht:
  • 27. September 2012
  • Abmessungen:
  • 155x7x235 mm.
  • Gewicht:
  • 195 g.
  Versandkostenfrei
  Sofort lieferbar
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Understanding High-Dimensional Spaces

High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. 
There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets arelarge and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. 
The book will be of value to practitioners, graduate students and researchers.

Kund*innenbewertungen von Understanding High-Dimensional Spaces



Ähnliche Bücher finden
Das Buch Understanding High-Dimensional Spaces ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.