Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Using Machine Learning Approaches

Über Using Machine Learning Approaches

Highly accurate and reliable passenger air travel demand forecasts are critical for airports as they are a key input into airport master plans and they are also used to guide management decisions on airport design and infrastructure planning, airport operations, and resource planning. The objective of this book is to develop and empirically test adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict airport¿s passenger demand. The study is based on five major airports: Frankfurt Airport, Hong Kong International Airport, Tokyös Narita International Airport, Chicagös O¿Hare International Airport, and Sydney Kingsford Smith Airport, Australia. The performance of the artificial neural network (ANN) and adaptive neuro-fuzzy inference systems models was assessed by five goodness of fit measures: coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). Artificial intelligence-based machine learning modelling techniques are worthy of consideration for those interested in forecasting airport passenger demand.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786205529454
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 272
  • Veröffentlicht:
  • 13. Januar 2023
  • Abmessungen:
  • 150x17x220 mm.
  • Gewicht:
  • 423 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Using Machine Learning Approaches

Highly accurate and reliable passenger air travel demand forecasts are critical for airports as they are a key input into airport master plans and they are also used to guide management decisions on airport design and infrastructure planning, airport operations, and resource planning. The objective of this book is to develop and empirically test adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) to predict airport¿s passenger demand. The study is based on five major airports: Frankfurt Airport, Hong Kong International Airport, Tokyös Narita International Airport, Chicagös O¿Hare International Airport, and Sydney Kingsford Smith Airport, Australia. The performance of the artificial neural network (ANN) and adaptive neuro-fuzzy inference systems models was assessed by five goodness of fit measures: coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). Artificial intelligence-based machine learning modelling techniques are worthy of consideration for those interested in forecasting airport passenger demand.

Kund*innenbewertungen von Using Machine Learning Approaches



Ähnliche Bücher finden
Das Buch Using Machine Learning Approaches ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.