Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Real-Time Demand Forecasting

Real-Time Demand Forecastingvon Punit Gupta Sie sparen 16% des UVP sparen 16%
Über Real-Time Demand Forecasting

The model which we have presented is a Linear Regression Model. In the results above we see that predictions can be done on the basis of the data available and is approximately accurate. An accurate forecast is very important for the demand planning team. The data used in this project and building the model is using the sales-in data for different stores. The important factor to be considered is the stability of the model and removing the game-playing. A community version of a platform is used to build the model. Linear Regression model is developed in pyspark. After the results are generated, dataframe of results is validated and generated and is sent backto the Azure SQL database to be used in Power BI.In the future work, different techniques will be considered and researched. Time-Series and Machine Learning to be built in one platform and check how the minimization of mse produces the forecast. The predictions can be hyper parameterized to give more accurately tuned results. Also, in the PowerBI report more measures and visualizations can be made on basis of individual¿s thought process.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786202674478
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 104
  • Veröffentlicht:
  • 2. Juli 2020
  • Abmessungen:
  • 150x7x220 mm.
  • Gewicht:
  • 173 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Real-Time Demand Forecasting

The model which we have presented is a Linear Regression Model. In the results above we see that predictions can be done on the basis of the data available and is approximately accurate. An accurate forecast is very important for the demand planning team. The data used in this project and building the model is using the sales-in data for different stores. The important factor to be considered is the stability of the model and removing the game-playing. A community version of a platform is used to build the model. Linear Regression model is developed in pyspark. After the results are generated, dataframe of results is validated and generated and is sent backto the Azure SQL database to be used in Power BI.In the future work, different techniques will be considered and researched. Time-Series and Machine Learning to be built in one platform and check how the minimization of mse produces the forecast. The predictions can be hyper parameterized to give more accurately tuned results. Also, in the PowerBI report more measures and visualizations can be made on basis of individual¿s thought process.

Kund*innenbewertungen von Real-Time Demand Forecasting



Ähnliche Bücher finden
Das Buch Real-Time Demand Forecasting ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.