Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Statistical Analysis for High-Dimensional Data

- The Abel Symposium 2014

enthalten in Abel Symposia-Reihe

Über Statistical Analysis for High-Dimensional Data

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in ¿big datä situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783319270975
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 306
  • Veröffentlicht:
  • 16. Februar 2016
  • Ausgabe:
  • 12016
  • Abmessungen:
  • 235x155x19 mm.
  • Gewicht:
  • 6033 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Statistical Analysis for High-Dimensional Data

This book features research contributions from
The Abel Symposium on Statistical Analysis for High Dimensional Data, held in
Nyvågar, Lofoten, Norway, in May 2014.
The focus of the symposium was on statistical
and machine learning methodologies specifically developed for inference in ¿big
datä situations, with particular reference to genomic applications. The
contributors, who are among the most prominent researchers on the theory of
statistics for high dimensional inference, present new theories and methods, as
well as challenging applications and computational solutions. Specific themes
include, among others, variable selection and screening, penalised regression,
sparsity, thresholding, low dimensional structures, computational challenges,
non-convex situations, learning graphical models, sparse covariance and
precision matrices, semi- and non-parametric formulations, multiple testing,
classification, factor models, clustering, and preselection.
Highlighting cutting-edge research
and casting light on future research directions, the contributions will benefit
graduate students and researchers in computational biology, statistics and the
machine learning community.

Kund*innenbewertungen von Statistical Analysis for High-Dimensional Data



Ähnliche Bücher finden
Das Buch Statistical Analysis for High-Dimensional Data ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.